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Oscillons, spiral waves, and stripes in a model of vibrated sand
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A semicontinuum model of a thin layer of vibrated sand is proposed that qualitatively reproduces experi-
mental observations of localized subharmonic excitatioscillons” ) in addition to globally striped patterns.
Numerical simulations recover a phase diagram similar to experimental observations and physical mechanisms
for the transitions across phase boundaries are proposed. A scaling law is given for the size of the stripes and
oscillons. Simulations in a different region of phase space reveal spiral W&8H363-651X98)50802-1

PACS numbeps): 83.10.Pp, 83.70.Fn, 47.54r, 46.10:+z

This paper addresses the recent discovery by Umbarare contained in the dynamics of a single inelastic bouncing
howar, Melo, and SwinnefMS) of novel localized subhar- ball. Here this idea is generalized so that the bouncing balls
monic excitations in vibrated sarfd]. These excitations— are viscously coupled, weakly elastic, and capable of hori-
dubbed “oscillons”—are considerably different than the zontal mass transfer. Specifically, assume that space is con-
usual global patterns associated with nonequilibrium pattertinuous and that the vertical extent of the sand layer may be
formation[2], not only because they are local, but also be-contracted to a two-dimensional sheet with heig(x,y,t)
cause they interact. Thus, one would like to know both why=s(t) moving in the vertical direction with velocity
they exist and whether any of the peculiarities of granulamu(x,y,t), wheret is time andx andy are orthogonal coor-
media[ 3] are necessary for their formation. To address thesdinates in a plane parallel to the vibrating plate. The equation
questions, this paper proposes a model, which is based parthyf motion of the sheet is
on continuum mechanid€] and studied by numerical simu- _
lation. In addition to recovering much of the phenomenology du=rvV2u—g+B(h,u,s,s,a), D
of the UMS experiments, the model serves to indicate a
physical mechanism for the appearance of the localized exwhere V2=a)2(+ &5, v is the viscosity coefficient, and the
citations and their interactions. In particular, both local andfunction B specifies how the sheet bounces when it hits the
global structures are seen to result from density fluctuationslate.B is implicitly defined by[13]
which, due to the inelasticity of intergranular collisions, can

create bistable states. The model also exhibits spiral waves of U—s+ a('s— u)
the type usually associated with reaction-diffusion systems
[5]. when
The relevant experimental setting is as follo@s6—9. A
layer of granular materidl‘sand”), about 15 particles deep h=s, 2

and with two-dimensional horizontal extent far greater than
its depth, is subjected to vibrations by an underlying massivévhere 0<a<1 is the effective coefficient of restitution of
plate. The vertical displacemeatof the plate is sinusoidal the granular aggregate and the heigghs given bydh=u.
with frequencyf and amplitudeA: s(t) = Asin2sft. The con- The coefficienta plays a major role in the model. Al-
trol parameters of the experiment areand the dimension- though it is often assumed that grain-grain collisions cause a
less acceleratioh = A(27f)?/g, whereg is the acceleration pile of vibrated sand to act as if the effective valuexofvere
of gravity. In the oscillatory motion that results for>1,  zero[6,7,14, thin layers of sand may be expected to have
subharmonic striped patterns in addition to patterns witrsignificant fluctuations in density that resultdnvarying in
square and hexagonal symmetry have been obs¢fregl.  both space and time. Specifically, define the area density
Oscillons appear within the same experimghg]. They are  p(X,Y,t) to be the number of particles above a unit area of
confined circular regions of subharmonic oscillations of fre-the vibrating plate. Density fluctuations then enter the dy-
quencyf/2 surrounded by regions oscillating with the exci- namics via an “equation of stated(p) that is inserted into
tation frequencyf. They occur in a small region of the,f  Egs.(1) and(2). The precise form of(p) should be unim-
phase plane, in the transition region between patterned arigprtant, but, following common observati8], it should be
flat states. a monotonically decreasing function pf

Whereas other models of vibrated sand usually consist of It remains to specify how evolves. First, one expects
either microscopic molecular dynamidg.g., [10,11) or  density gradients to smooth out due to self-diffusion. Sec-
fully continuous amplitude equatiorjd2], the model intro- ond, since the sand layer is thimmay be considered to be
duced in this paper is in a sense a combination of the physapproximately equal to the height of the top of the layer,
cal realism of microscopic models with the convenience ofwith h—s the layer’s thickness. Then when a part of the
continuum-mechanical approximations. In particular, thesheeth(x,y,t) impacts the platel{(=s), sand splashes to-
present model derives in part from the observafiohthat  wards regions wherk>s, that is, it moves in the direction
aspects of the transitions from one global pattern to anothesf increasing h. Whereas the sheet—a mathematical
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artifice—may reside on the plate for only an instant of time, dp=D[V2p—V-(pVh/hy)]. ®)

real layers of finite thickness should undergo this rearrange-

ment of mass during a significant fraction of the vibration

cycle. Assuming that the gradients of bdtlandp are small, Equations(1)—(3) are solved by an explicit finite differ-
and that horizontal motion can occur at all times, a linearence scheme on a square lattice with periodic boundary con-
response gives the mass flix —D(Vp—pVh/hy), where  ditions and a discrete time step equal to 4d. Addition-

D is a diffusion coefficienthg is a characteristic height, and ally, Newton’s method is used to determine the precise time
V is the horizontal gradient. Conservation of mass then giveat which the bounce conditioh=s is met. The effective
dp=—V-Jor coefficient of restitution is given by

az, P<p1

1+COS(7TP pl)}, pP1<p<p2
P2—P1

ay, p>p2.

1
a(p)=y a1+ E(az_ ay)

In the simulations described belolexcept Fig. 1d)], «;  the density is high and the bounce low. The time-averaged
=0.20,a,=0.25,p,=0.94,,, andp,=0.9%,,, wherep,,  density within the oscillon igp,,, the same density as its
is the average density. To aid comparison to experiments, anvironment. This behavior is qualit_atively Qiﬁerent than
characteristic frequencfy, is implicitly defined in terms of that found in the model of Ref12], which predicts that the

v, D, and a characteristic grain siza by choosing time-averaged density within oscillons is significantly de-
vl(27f,a%) =0.03 andD/(2fya2) = 0.9, and the character- creased. _ _

istic heighth, is set to 16/(2f,)2. Since sharp fronts are Figure Xb) depicts another_ staﬂonaw state qf th_e model, a
expected as a result of the impulsive forcify, the lattice stable pattern of randomly oriented stripes oscillating subhar-

spacingA is chosen to be of the order of the mean-free-pat onically with frequencyf/2. The parameters of this simu-

/. For frequencies nedi,, one has/~ \»ifo=0.4a; thus,  ohon are the same as for Fig(al, except that nowf/fo
: . =0.96. The transient evolution to this pattern is similar to
A is set equal t@. In the UMS experimentsa=0.017 cm

and fy=25 Hz. Using these quantities, one finds that the
simulation parameters correspond ite=1.4x10"3 cné/s,
D=4.1x10"2 cn?/s, andhy=0.64 cm=2.2na, wheren
=17 is a typical number of particles in a layer.

Figure 1 depicts steady patterns of the fiblgk,y) ob-
tained from simulations performed with different control pa-
rameters. Since a flat interface is linearly stable, simulations
are initialized far from the flat state, with randomly distrib-
utedh andu and uniformp. The transient evolution of the
system(not shown is such that fluctuations i lead to
fluctuations inp, allowing small areas of low density, and
thus largea, to form. One example of the eventual steady
solution, forl'=2.42 andf/f,=1.06, is depicted in Fig.(&).

The small circular regions of black or white are “oscillons”
oscillating subharmonically with frequenci/2, while the
gray area is oscillating with the excitation frequerfcyNote
that two oscillons of opposite polarity occur as a bound pair,
similar to the interactions found in the UMS experiments
[1,8].

Figure 2 shows a three-dimensional perspective of one
isolated oscillon and the bound pair in Figallat an integer
value of r=ft. The time variation ofh and p inside and
outside the isolated oscillon is also shown. One sees clearly £ 1. steady patterns of the height fiitk,y); the grey scale
that the oscillon is subharmonic, with craters changing tQngicates relative heigttwhite is high and the lattice size is 128

peakg, or peaks changing to craters, once per vibration CYClR all cases. Contrast is exaggerated for clarigy: Oscillons
upon impact with the plate. Moreover, the mechanism for the-=2 42, f/f,=1.06). (b): Stripes (=2.42, f/f,=0.96). (c):

oscillon’s excitation is clear: when the crater phase impactgangled oscillons I =2.34, f/f,=0.96). (d): Spiral wave oscillat-
the plate(e.g., atr=1), the density is low, and the bounce is ing with frequencyf/3 (I'=9.0, f/f,=1.0; see text for other pa-
correspondingly high. When the peak hits the plate, howeverameters
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FIG. 3. Phase diagram detailing the appearance of stable stripes,
oscillons, and flat states. The tangled oscillon ph@se labeledl
occurs in the part of the oscillon region whdre<2.37. Squares:
Transitions between oscillons and flat state. Triangles: Transitions
between stripes and oscillons. The circles separate stripes from
complex period-2 structures.

The radius of the oscillons and width of the stripes is
chosen by the diffusivityD: increasingD while holding f
constant increases the length over which material can move
horizontally, for example, into and out of an oscillon. This
wa 2 30 % 30 __ 40 length, which should scale likeD(f)'?, determines the size

y/a of the area over whiclp (and thusa) may fluctuate. Figure

4 confirms this argument. The length scaéleis computed

FIG. 2. Bottom: Three-dimensional perspective of the two . i .
bound oscillons and one of the isolated oscillons of Fig. 1, at timefrom the peak of the circularly averaged two-dimensional

7=1, an integer. Top: Evolution oh(t) and p(t) inside (solid power spectrum Qh(x,y), in the Same manner as IS com-

line) and outside(dashed ling the isolated oscillon in addition to monly emplc_)yed in Stqdles of domain gro"‘m]-

the plate motiors(t) (dotted-dashed line The transitions in Fig. 3 may now be explalngd. From Eq.
(3), one sees that the amplitudep;, of the density fluctua-

the sequence described for Figga)land Xb), except that tions inside an oscillon should scale such that

the oscillons that are formed, particularly those which are

paired, are unstable. Patches of striped regions then grow, Apinl pay~DI(@%F)~(fo /). (4)

eventually filling the entire space. Figuréc), on the other

hand, shows that for the same frequency but With2.34,  Thus, for constanf” there is a critical frequency, above

this growth terminates in the form of localized stable subharwhich A p,, becomes too small to excite subharmonic oscil-

monictangled oscillonswith frequencyf/2. The tangled os- |ations, or, in other words, the oscillons decay into the flat
cillons occur as either stable chains of oscillons or as local-
ized stripes. Both cases have been observed in experiments
[1,8].

These simulations and others are summarized in the phase L6 r
diagram of Fig. 3. One sees that the oscillon phase is sand-
wiched between the striped and flat phases in the plane of the 14 |
control parameter$’ and f. A comparison with the phase §
diagram of the UMS experimenig] reveals two important e
similarities. First, the values df over which the oscillons gy

are observed is roughly the same. Second, in both cases the
transition from a globally patterned state—here, stripes, 1.0}
while in the UMS experiments, standing waves with square
symmetry— to oscillons to the flat state occurs generally as . . ‘ )
I' decreases of increases. That the dependencelorso 0.8 0.0 05 1.0 15
closely matches experiments is partly the result of the choice log,,[D/(2xt,a%)]

of a; and a,. The values chosen here span a bifurcation

from period-1 to period-2 oscillations of a single bouncing  FiG. 4. Characteristic length scale, proportional to the stripe
ball. Decreasingr; and a, would increase the values &f  width, for varying values of the diffusiviyd, computed withl’
over which oscillons are observed. Thus the match Bug-  =2.42 andf/f,=1.0. The straight line, obtained from linear regres-
gests that the UMS sand layer hasedfectivecoefficient of  sion, has slope 0.480.01, which compares well to the predicted
restitution ofa=0.2. value of 1/2.
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phase. To understand the transition from oscillons to stripesase stable spiral waves of period 3 are found fo<d.0
note that the difference between the amplitude of the density:10.0. Such spiral waves are well known solutigh$ of
fluctuations a small distancé~a inside and outside an os- coupled nonlinear oscillators such as those represented by
cillon of radiusR should scale like//R due to the conser- Eq.(1). Spiral patterns that are probably of a different nature
vation of mass. In symbols, have recently been observed in experiméBis
In concluding, it is useful to emphasize that the model of
- Y =Y 1/2__ 1/2 )
(Apin=Apou)/ pay~ /IR~ (a°f/D) (F/70)™" this paper is based explicitly on the inelasticity of intergranu-

Thus asf decreased p;, and Ap,,; approach one another. lar collisions. Thus, although broadly similar structures have
There is then a critical frequendf),<f. below which the —been found in vibrated liquidsl 7], the mechanisms detailed
density fluctuations are sufficient to excite subharmonic oshere do not appear to have a direct physical analog in incom-
cillations both insideand outside an oscillon—that is, form Pressible fluids. On the other hand, several Ginzburg-Landau
stripes—but above which an isolated oscillon may be stableQr amplitude-equation models have been proposed as univer-
Note that this argument also explains why oscillons oftersal models of localized excitationfs2,18—2Q. Although
occur in out-of-phase pairs or chains, since these structurdbese models are less mechanistic than the one here, they are
are essentially nascent stripes whose further growth is frussimpler, in part because they represent an averaging over
trated due to largé. The argument also makes clear why theboth time and space, whereas the model of this paper is
transition from oscillons to stripes is one in which a globalessentially microscopic in time. It is likely that a full
pattern is formed not by the instability of a particular mode,continuum-mechanical approximation of Eg¥)—(3) exists.

but rather by the filling of space by a particular localizedts specification is an important open question because it will
pattern[16]. not only aid comparison with Ref12,18—2Q but will also

The pattern of Fig. @), a snapshot of an expanding spiral help identify other systems in which localized excitations are
wave[5] in which each band of constant height is oscillating possible.

with frequencyf/3, is qualitatively different from the others.

Compared to the patterns discussed above, here the excita- It is @ pleasure to thank Michael Brenner for helpful dis-
tion is much greater [[=9.0) as is the viscosity cussions. | would also like to thank P. Dodds, J. Feder, O.

[v/(27wfa?)=0.4], and the sheet is more inelastie,(=0.0  van Genabeek, S. Nagel, P. Umbanhowar, and T. Witelski
and a,=0.05). The other parameters are unchanged. Mucfor their remarks. This work was supported in part by NSF
the same behavior is also obtained by setfing0, in which ~ Grant No. EAR-9706220.
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