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Oscillons, spiral waves, and stripes in a model of vibrated sand

Daniel H. Rothman
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~Received 20 May 1997; revised manuscript received 14 October 1997!

A semicontinuum model of a thin layer of vibrated sand is proposed that qualitatively reproduces experi-
mental observations of localized subharmonic excitations~‘‘oscillons’’ ! in addition to globally striped patterns.
Numerical simulations recover a phase diagram similar to experimental observations and physical mechanisms
for the transitions across phase boundaries are proposed. A scaling law is given for the size of the stripes and
oscillons. Simulations in a different region of phase space reveal spiral waves.@S1063-651X~98!50802-1#

PACS number~s!: 83.10.Pp, 83.70.Fn, 47.54.1r, 46.10.1z
a
-

e
te
e
h
la
es
ar
-
g

e
n
n

an
s
m

p
a
iv

l

it

re
i-

a

t

ys
o

th

th

ing
alls
ori-
con-
be

tion

e
the

f

-
e a

ve

sity
of
y-

s
ec-
e
er,
he
-

al
This paper addresses the recent discovery by Umb
howar, Melo, and Swinney~UMS! of novel localized subhar
monic excitations in vibrated sand@1#. These excitations—
dubbed ‘‘oscillons’’—are considerably different than th
usual global patterns associated with nonequilibrium pat
formation @2#, not only because they are local, but also b
cause they interact. Thus, one would like to know both w
they exist and whether any of the peculiarities of granu
media@3# are necessary for their formation. To address th
questions, this paper proposes a model, which is based p
on continuum mechanics@4# and studied by numerical simu
lation. In addition to recovering much of the phenomenolo
of the UMS experiments, the model serves to indicate
physical mechanism for the appearance of the localized
citations and their interactions. In particular, both local a
global structures are seen to result from density fluctuatio
which, due to the inelasticity of intergranular collisions, c
create bistable states. The model also exhibits spiral wave
the type usually associated with reaction-diffusion syste
@5#.

The relevant experimental setting is as follows@1,6–9#. A
layer of granular material~‘‘sand’’ !, about 15 particles dee
and with two-dimensional horizontal extent far greater th
its depth, is subjected to vibrations by an underlying mass
plate. The vertical displacements of the plate is sinusoida
with frequencyf and amplitudeA: s(t)5Asin2pft. The con-
trol parameters of the experiment aref and the dimension-
less accelerationG5A(2p f )2/g, whereg is the acceleration
of gravity. In the oscillatory motion that results forG.1,
subharmonic striped patterns in addition to patterns w
square and hexagonal symmetry have been observed@6–9#.
Oscillons appear within the same experiment@1,8#. They are
confined circular regions of subharmonic oscillations of f
quencyf /2 surrounded by regions oscillating with the exc
tation frequencyf . They occur in a small region of theG, f
phase plane, in the transition region between patterned
flat states.

Whereas other models of vibrated sand usually consis
either microscopic molecular dynamics~e.g., @10,11#! or
fully continuous amplitude equations@12#, the model intro-
duced in this paper is in a sense a combination of the ph
cal realism of microscopic models with the convenience
continuum-mechanical approximations. In particular,
present model derives in part from the observation@7# that
aspects of the transitions from one global pattern to ano
571063-651X/98/57~2!/1239~4!/$15.00
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are contained in the dynamics of a single inelastic bounc
ball. Here this idea is generalized so that the bouncing b
are viscously coupled, weakly elastic, and capable of h
zontal mass transfer. Specifically, assume that space is
tinuous and that the vertical extent of the sand layer may
contracted to a two-dimensional sheet with heighth(x,y,t)
>s(t) moving in the vertical direction with velocity
u(x,y,t), wheret is time andx and y are orthogonal coor-
dinates in a plane parallel to the vibrating plate. The equa
of motion of the sheet is

] tu5n¹2u2g1B~h,u,s,ṡ,a!, ~1!

where ¹25]x
21]y

2 , n is the viscosity coefficient, and th
function B specifies how the sheet bounces when it hits
plate.B is implicitly defined by@13#

u→ ṡ1a~ ṡ2u!

when

h5s, ~2!

where 0,a,1 is the effective coefficient of restitution o
the granular aggregate and the heighth is given by] th5u.

The coefficienta plays a major role in the model. Al
though it is often assumed that grain-grain collisions caus
pile of vibrated sand to act as if the effective value ofa were
zero @6,7,14#, thin layers of sand may be expected to ha
significant fluctuations in density that result ina varying in
both space and time. Specifically, define the area den
r(x,y,t) to be the number of particles above a unit area
the vibrating plate. Density fluctuations then enter the d
namics via an ‘‘equation of state’’a(r) that is inserted into
Eqs.~1! and~2!. The precise form ofa(r) should be unim-
portant, but, following common observation@3#, it should be
a monotonically decreasing function ofr.

It remains to specify howr evolves. First, one expect
density gradients to smooth out due to self-diffusion. S
ond, since the sand layer is thin,h may be considered to b
approximately equal to the height of the top of the lay
with h2s the layer’s thickness. Then when a part of t
sheeth(x,y,t) impacts the plate (h5s), sand splashes to
wards regions whereh.s, that is, it moves in the direction
of increasing h. Whereas the sheet—a mathematic
R1239 © 1998 The American Physical Society
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artifice—may reside on the plate for only an instant of tim
real layers of finite thickness should undergo this rearran
ment of mass during a significant fraction of the vibrati
cycle. Assuming that the gradients of bothh andr are small,
and that horizontal motion can occur at all times, a line
response gives the mass fluxJ52D(¹r2r¹h/h0), where
D is a diffusion coefficient,h0 is a characteristic height, an
¹ is the horizontal gradient. Conservation of mass then gi
] tr52¹•J or
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] tr5D@¹2r2¹•~r¹h/h0!#. ~3!

Equations~1!–~3! are solved by an explicit finite differ-
ence scheme on a square lattice with periodic boundary c
ditions and a discrete time step equal to 1022/ f . Addition-
ally, Newton’s method is used to determine the precise ti
at which the bounce conditionh5s is met. The effective
coefficient of restitution is given by
a~r!5H a2 , r,r1

a11
1

2
~a22a1!F11cosS p

r2r1

r22r1
D G , r1,r,r2

a1 , r.r2 .
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In the simulations described below@except Fig. 1~d!#, a1

50.20,a250.25,r150.94rav, andr250.99rav, whererav

is the average density. To aid comparison to experimen
characteristic frequencyf 0 is implicitly defined in terms of
n, D, and a characteristic grain sizea by choosing
n/(2p f 0a2)50.03 andD/(2p f 0a2)50.9, and the character
istic heighth0 is set to 16g/(2p f 0)2. Since sharp fronts are
expected as a result of the impulsive forcing~2!, the lattice
spacingD is chosen to be of the order of the mean-free-p
l . For frequencies nearf 0, one hasl ;An/ f 0.0.4a; thus,
D is set equal toa. In the UMS experiments,a.0.017 cm
and f 0.25 Hz. Using these quantities, one finds that
simulation parameters correspond ton.1.431023 cm2/s,
D.4.131022 cm2/s, andh0.0.64 cm.2.2na, where n
517 is a typical number of particles in a layer.

Figure 1 depicts steady patterns of the fieldh(x,y) ob-
tained from simulations performed with different control p
rameters. Since a flat interface is linearly stable, simulati
are initialized far from the flat state, with randomly distri
utedh andu and uniformr. The transient evolution of the
system~not shown! is such that fluctuations inh lead to
fluctuations inr, allowing small areas of low density, an
thus largea, to form. One example of the eventual stea
solution, forG52.42 andf / f 051.06, is depicted in Fig. 1~a!.
The small circular regions of black or white are ‘‘oscillons
oscillating subharmonically with frequencyf /2, while the
gray area is oscillating with the excitation frequencyf . Note
that two oscillons of opposite polarity occur as a bound p
similar to the interactions found in the UMS experimen
@1,8#.

Figure 2 shows a three-dimensional perspective of
isolated oscillon and the bound pair in Fig. 1~a! at an integer
value of t5 f t. The time variation ofh and r inside and
outside the isolated oscillon is also shown. One sees cle
that the oscillon is subharmonic, with craters changing
peaks, or peaks changing to craters, once per vibration c
upon impact with the plate. Moreover, the mechanism for
oscillon’s excitation is clear: when the crater phase impa
the plate~e.g., att.1), the density is low, and the bounce
correspondingly high. When the peak hits the plate, howe
a
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the density is high and the bounce low. The time-avera
density within the oscillon israv, the same density as it
environment. This behavior is qualitatively different tha
that found in the model of Ref.@12#, which predicts that the
time-averaged density within oscillons is significantly d
creased.

Figure 1~b! depicts another stationary state of the mode
stable pattern of randomly oriented stripes oscillating subh
monically with frequencyf /2. The parameters of this simu
lation are the same as for Fig. 1~a!, except that nowf / f 0
50.96. The transient evolution to this pattern is similar

FIG. 1. Steady patterns of the height fieldh(x,y); the grey scale
indicates relative height~white is high! and the lattice size is 1282

in all cases. Contrast is exaggerated for clarity.~a!: Oscillons (G
52.42, f / f 051.06). ~b!: Stripes (G52.42, f / f 050.96). ~c!:
Tangled oscillons (G52.34, f / f 050.96). ~d!: Spiral wave oscillat-
ing with frequencyf /3 (G59.0, f / f 051.0; see text for other pa
rameters!.
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the sequence described for Figs. 1~a! and 1~b!, except that
the oscillons that are formed, particularly those which
paired, are unstable. Patches of striped regions then g
eventually filling the entire space. Figure 1~c!, on the other
hand, shows that for the same frequency but withG52.34,
this growth terminates in the form of localized stable subh
monic tangled oscillonswith frequencyf /2. The tangled os-
cillons occur as either stable chains of oscillons or as lo
ized stripes. Both cases have been observed in experim
@1,8#.

These simulations and others are summarized in the p
diagram of Fig. 3. One sees that the oscillon phase is s
wiched between the striped and flat phases in the plane o
control parametersG and f . A comparison with the phas
diagram of the UMS experiments@1# reveals two important
similarities. First, the values ofG over which the oscillons
are observed is roughly the same. Second, in both case
transition from a globally patterned state—here, strip
while in the UMS experiments, standing waves with squ
symmetry— to oscillons to the flat state occurs generally
G decreases orf increases. That the dependence onG so
closely matches experiments is partly the result of the cho
of a1 and a2. The values chosen here span a bifurcat
from period-1 to period-2 oscillations of a single bounci
ball. Decreasinga1 anda2 would increase the values ofG
over which oscillons are observed. Thus the match inG sug-
gests that the UMS sand layer has aneffectivecoefficient of
restitution ofa.0.2.

FIG. 2. Bottom: Three-dimensional perspective of the t
bound oscillons and one of the isolated oscillons of Fig. 1, at t
t5t0, an integer. Top: Evolution ofh(t) and r(t) inside ~solid
line! and outside~dashed line! the isolated oscillon in addition to
the plate motions(t) ~dotted-dashed line!.
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The radius of the oscillons and width of the stripes
chosen by the diffusivityD: increasingD while holding f
constant increases the length over which material can m
horizontally, for example, into and out of an oscillon. Th
length, which should scale like (D/ f )1/2, determines the size
of the area over whichr ~and thusa) may fluctuate. Figure
4 confirms this argument. The length scaleL is computed
from the peak of the circularly averaged two-dimension
power spectrum ofh(x,y), in the same manner as is com
monly employed in studies of domain growth@15#.

The transitions in Fig. 3 may now be explained. From E
~3!, one sees that the amplitudeDr in of the density fluctua-
tions inside an oscillon should scale such that

Dr in /rav;D/~a2f !;~ f 0 / f !. ~4!

Thus, for constantG there is a critical frequencyf c above
which Dr in becomes too small to excite subharmonic osc
lations, or, in other words, the oscillons decay into the fl

e

FIG. 3. Phase diagram detailing the appearance of stable str
oscillons, and flat states. The tangled oscillon phase~not labeled!
occurs in the part of the oscillon region whereG,2.37. Squares:
Transitions between oscillons and flat state. Triangles: Transit
between stripes and oscillons. The circles separate stripes
complex period-2 structures.

FIG. 4. Characteristic length scaleL, proportional to the stripe
width, for varying values of the diffusivityD, computed withG
52.42 andf / f 051.0. The straight line, obtained from linear regre
sion, has slope 0.4860.01, which compares well to the predicte
value of 1/2.
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phase. To understand the transition from oscillons to strip
note that the difference between the amplitude of the den
fluctuations a small distancel ;a inside and outside an os
cillon of radiusR should scale likel /R due to the conser
vation of mass. In symbols,

~Dr in2Drout!/rav;l /R;~a2f /D !1/2;~ f / f 0!1/2.

Thus asf decreasesDr in and Drout approach one anothe
There is then a critical frequencyf c8, f c below which the
density fluctuations are sufficient to excite subharmonic
cillations both insideand outside an oscillon—that is, form
stripes—but above which an isolated oscillon may be sta
Note that this argument also explains why oscillons of
occur in out-of-phase pairs or chains, since these struct
are essentially nascent stripes whose further growth is f
trated due to largef . The argument also makes clear why t
transition from oscillons to stripes is one in which a glob
pattern is formed not by the instability of a particular mod
but rather by the filling of space by a particular localiz
pattern@16#.

The pattern of Fig. 1~d!, a snapshot of an expanding spir
wave@5# in which each band of constant height is oscillati
with frequencyf /3, is qualitatively different from the others
Compared to the patterns discussed above, here the ex
tion is much greater (G59.0) as is the viscosity
@n/(2p f a2)50.4#, and the sheet is more inelastic (a150.0
and a250.05). The other parameters are unchanged. M
the same behavior is also obtained by settingD50, in which
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case stable spiral waves of period 3 are found for 9.0,G
,10.0. Such spiral waves are well known solutions@5# of
coupled nonlinear oscillators such as those represente
Eq. ~1!. Spiral patterns that are probably of a different natu
have recently been observed in experiments@8#.

In concluding, it is useful to emphasize that the model
this paper is based explicitly on the inelasticity of intergran
lar collisions. Thus, although broadly similar structures ha
been found in vibrated liquids@17#, the mechanisms detaile
here do not appear to have a direct physical analog in inc
pressible fluids. On the other hand, several Ginzburg-Lan
or amplitude-equation models have been proposed as un
sal models of localized excitations@12,18–20#. Although
these models are less mechanistic than the one here, the
simpler, in part because they represent an averaging
both time and space, whereas the model of this pape
essentially microscopic in time. It is likely that a fu
continuum-mechanical approximation of Eqs.~1!–~3! exists.
Its specification is an important open question because it
not only aid comparison with Refs.@12,18–20# but will also
help identify other systems in which localized excitations a
possible.
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